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ENHANCED MULTIOBJECTIVE OPTIMIZATION TECHNIQUE FOR
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ABSTRACT

A multidisciplinary design optimization procedure which couples formal multiobjectives

based techniques and complex analysis procedures (such as computational fluid dynamics (CFD)

codes) developed. The procedure has been demonstrated on a specific high speed flow application

involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple

design objectives arising from complex performance requirements, multiobjective formulation

techniques are used to formulate the optimization problem. Techniques to enhance the existing

Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been

developed. The K-S function procedure used in the proposed work transforms a constrained

multiple objective functions problem into an unconstrained problem which then is solved using the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the

transformation process to each objective function. This enhanced procedure will provide the

designer the capability to emphasize specific design objectives during the optimization process.

The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which

solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along

with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic

performance as well as sonic boom as the design objectives to be optimized simultaneously.

Sensitivity analysis is performed using a discrete differentiation approach. An approximation

technique has been used within the optimizer to improve the overall computational efficiency of the

procedure in order to make it suitable for design applications in an industrial setting.
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RESEARCH STATEMENT

BACKGROUND

Design of modern day aircraft is a multidisciplinary process involving the integration of

several disciplines such as aerodynamics, structures, dynamics, and propulsion. Design

requirements such as aerodynamic performance, structural integrity, range, economic viability,

environmental impact etc. impose wide ranging requirements on the design parameters such as the

geometric shape, size, material etc. In such a complex process, optimization techniques are

valuable tools that enable the designer to choose a design point for the given aircraft configuration.

These optimization techniques should be able to take into account the different disciplines

associated with the aircraft design simultaneously. Also, in such a multidisciplinary process, the

existence of multiple design objectives and/or constraints is inevitable. This requires that the

optimization technique be capable of addressing multiple design objectives and constraints. This

can be a difficult task because desired performance criteria in the different disciplines involved in

the design process often lead to conflicting requirements on vehicle configurations. Since such an

optimization problem involves the coupling of many design objectives, the objective function

formulation is complicated. A common approach for addressing such a design problem is to

combine the various objective functions linearly using weight factors. Such a procedure does not

satisfy the necessary Kuhn-Tucker conditions of optimality. Also, the proper choice of the weight

factors, which is based primarily on the designer's intuition and experience, is critical in such a

design process. A more rigorous approach is therefore required in establishing appropriate

mathematical formulations for such a problem. There are a number of optimization procedures that

are capable of addressing this aspect [1]. One such optimization technique is the Kreisselmeier-

Steinhauser (K-S) function approach [2,3]. The K-S technique is a multiobjective optimization

technique that combines all the objective functions and the constraints to form a single

unconstrained composite function to be minimized. An appropriate unconstrained solver is then

used to locate the minimum of the composite function. Any application where there is more than

one design criteria to optimize is a candidate for this method. The K-S technique has already been

shown to be effective in various applications such as Tilt-Rotor design, High-Speed Civil

Transport(HSCT) design, wing design, sonic boom minimization in HSCT, etc. [4-6]. This

approach, which is not judgmental in nature, enables the designer to avoid using weight factors in

the optimization problem formulation. However, the aircraft design process being inherently

hierarchical in nature, certain design criteria may often require more emphasis than others. For

example, in the design of high speed aircraft, sonic boom minimization may require a larger

emphasis than improvements in the lifting characteristics of the wing which already is at a near
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optimal design configuration. In the present work, a technique has been formulated to allow the

designer to have this capability, while preserving the original unweighted, user input-free

optimization capability. Thus, the new method is more versatile and lends itself to application in

both preliminary as well as detailed designs. The approach has been to modify the K-S functions

using weight factors (unlike the usual way of equal weights on all the objective functions), thus

enabling increased emphasis on specific objectives during the optimization process. This has been

achieved by multiplying the normalized objective functions of the original K-S function technique

with weight factors. The resultant new technique is heretofore referred to as the enhanced K-S

function technique.

The enhanced K-S multiobjective formulation technique has been applied to a number of

optimization problems with varying degrees of complexity which include both a classical three bar

truss problem and a HSCT sonic boom minimization problem. Both of these problems exhibit

conflicting design requirements. The three bar truss problem has been chosen to demonstrate the

effectiveness of the method by comparing it to a known optimization problem. The use of the

technique on the HSCT problem shows the effectiveness of the enhanced K-S method on a modem

day aerospace application. The HSCT problem has competing design criteria that must be

optimized. For example, minimum drag-to-lift ratio (Co/C 0 requires a slender forebody whereas

minimum sonic boom designs usually have blunt forebodies. The following sections briefly

outline the enhanced K-S function approach and the two problems used to demonstrate the

procedure. More detailed information about the problems and the K-S approach can be found in

the cited references and the following sections.

OBJECTIVES

The objectives of the present research effort were as follows.

(a) Refine the enhanced K-S function approach for multiobjective formulation by examining

the aspect of scaling the weight factors in order to achieve consistent optimum designs.

(b) Demonstrate the enhanced multiobjective design optimization procedure by addressing the

problem of minimizing sonic boom while improving aerodynamic performance

characteristics of high speed transport aircraft configurations using a variety of objective

function combinations.
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APPROACH

The overall approach has been to enhance the K-S function formulation, which is capable

of addressing multiple design objectives simultaneously, by adding weight factors to each objective

function. This formulation has been coupled to a comprehensive, three dimensional CFD solver

[7] to evaluate the flow field of the aircraft configuration being optimized. Appropriate sensitivity

analysis been used during optimization. Efforts have been taken to ensure computational efficiency

of the overall procedure. Relevant details of the analysis and optimization procedures along with

the outline of the enhancement technique are described in the following sections. Representative

results obtained by the preliminary application of the enhancement procedure are also given.

Multiobjective Formulation

The design process associated with modern aircraft development is complex. Multiple design

criteria with varying degrees of importance must be addressed. Very restrictive constraints are

usually imposed in order to make the overall design a viable one from the user's perspective.

Therefore careful attention must be given to the selection of the techniques used in the optimization

procedure so that the resultant procedure is efficient, accurate, robust and easily adaptable to

changing design requirements.

A multiobiective optimization problem:

An optimization problem with multiple design objectives can be stated as follows.

Minimize or maximize

subject to

Fk(diha), k = 1, 2 ..... NOBJ

n = 1, 2,..., NDV

(objective functions)

gj (_n) < 0 j = 1, 2,..., NCON (inequality constraints)

_bnL < _bn < d_nw (side constraints)

where NOBJ denotes the number of objective functions, NDV is the number of design variables

and NCON is the total number of constraints. The subscripts L and U represent lower and upper

bounds, respectively, on the design variable %

A variety of multiobjective techniques are available today and it is important to evaluate the

best formulation procedure appropriate for a given application. Based on the experience gained on

using a variety of multiobjective techniques on a wide spectrum of applications, the K-S function

approach [2,3] has been chosen for the proposed work. This technique (before enhancement) has

been successfully demonstrated on related applications by the Principal Investigators (PIs) [1,4-6].

Brief description of the method is given below.
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Kreisselmeier-Steinhauser (K-S) function approach:

In the K-S function approach, the original objective functions are transformed into reduced

or normalized objective functions [3]. Depending on whether these functions are to be minimized

or maximized (Eqns. la or lb), they can be expressed as,

fi (_) - Fi (_) - 1.0 - gmax < 0
rio

i= 1 ..... NF (la)

fi(_) = 1.0 Fi(_) gmax <0 i= 1 ..... NF (lb)
rio

where Fi0 represents the value of the original objective function at the current reference design

variable vector for a given iteration, and F i is the value of the original objective function which is

dependent on the design variable vector. Fi0 is constant for a whole iteration. The quantity gmax

is the largest value of the original constraint vector at the current reference point and is held

constant during each iteration. Since the reduced objective functions are analogous to the original

constraints, a new constraint vector fm(_), m = 1, 2, ... , M where M = NC + NF, is introduced.

The first NC elements of fr, are the original constraints of the problem and the next NF elements are

the reduced objective functions. The original constrained optimization problem with multiple

objective functions is thus transformed into a single-objective, unconstrained minimization problem

using the K-S function, as

Minimize

where

FKS (_)

1
= f._+ -log 

P

M

eP(fm(_)-fmax)

m=l

(2)
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where f,_ is the largest constraint corresponding to the new constraint vector fm (_) (in general not

equal to gmax). When the original constraints are satisfied during optimization, the constraints due

to the reduced objective functions are violated. Initially, in an infeasible design space, where the

original constraints are violated, the constraints due to the reduced objective functions are satisfied

(i.e., gmax is negative). The optimizer attempts to satisfy the violated constraints, thus optimizing

the original objective functions (Fi). The multiplier p, which is analogous to the draw-down factor

of penalty function formulation, controls the distance from the surface of the K-S envelope to the

surface of the maximum constraint function. When p is large, the K-S function will closely follow

the surface of the largest constraint function and when p is small, the K-S function will include

contributions from all constraints. The new unconstrained minimization problem can be solved by

using a variety of techniques. In the present work, the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm [8] has been used. This algorithm approximates the inverse of the Hessian of

the composite objective function using a rank-two update and guarantees both symmetry and

positive definiteness of the updated inverse Hessian matrix.

An example of the application of the K-S function formulation is illustrated in Figs. 1-2 for

an optimization problem with two objective functions to be minimized and one constraint. The

objective functions and the constraint are functions of a single design variable, _. An initial design

point of dR) = 0.5 is used in the example. At this point, the constraint is satisfied and, therefore,

gmax is negative. The original constraint and the two additional constraints from the two reduced

objective functions, calculated from Eq. la, are shown in Fig. 2 along with the K-S function

envelopes for two different values of p. Since gmax is negative, the constraints due to the two

reduced objective functions are positive and hence, violated, at the initial design point, dido. It is

seen in Fig. 2 that for p =1, the K-S function includes contributions from all the three constraints.

For the larger value of p = 3, the K-S function gets a stronger contribution from the largest

constraint and weaker contributions from the other two. Thus large values of p "draw down" the

K-S function closer to the value of the largest constraint. The value of p may change from cycle to

cycle in the optimization process. It is progressively increased so that, as the optimization
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proceeds, the K-S function more closely represents only the largest constraint (or the most violated

reduced objective function).

1-T_ ObjeI _ funcStivl Objec_ive2 Z

o.]

0 0.2 0.4 0.6 0.8 1

Design variable, dp

Figure 1. Original objective functions and constraints.

F 1 - Reduced objective function 1

F2 - Reduced objective function 2

gl - constraint 1

KS (p = 1) KS (p = 3)

.

1

0 0.2
I I I

0.4 0.6 0.8

Design variable,

Figure 2. K-S function envelope.

gl

F
1



Interchange Part A- Page 9

Enhanced K-S Function Technique

As mentioned above, the main focus of the present work is to enhance the K-S approach

described in the previous section which will enable the user to emphasize specific objective

functions. Towards this end, the reduced objective functions have been modified to allow relative

weighting of specific design criteria. This is achieved by incorporating a vector of weight factors

l_i (i = 1, 2, ... , NF) in the K-S envelope as shown below.

?i ((I)) -- [_iFi ((I)) _i -- gn_x i = 1,... , NF (3)

The total number of weight factors is equal to the number of objective functions. The relative

magnitudes of I_i will help to emphasize specific objective functions in the overall optimization

process. The weight factors (l_i) are positive numbers the numerical values of which are dictated

by the specific application. The original unweighted K-S formulation is recovered if I_i = 1.

In the present work, two different methods of weighting were investigated. The first one

involved assigning positive integer values larger than unity as the weight factor for the objective

function to be emphasized, while assigning a weight factor of unity to all other objective functions.

The second assigned unity to be the weight factor for the emphasized objective function, while

assigning a positive value smaller than unity to the remaining objective functions. In the sections

below, the following definitions are employed to identify the two methods described above.

Type A : Weight factors for emphasized objective functions are positive integer value larger
than unity, while all other weight factors are assigned a value of unity.

Type B : Weight factor for emphasized objective function is unity, while all other weight
factors take on values less than unity.

Sensitivity Analysis

Sensitivity analysis is an essential part of any gradient-based design optimization procedure.

Since a CFD-based, 3D Navier Stokes solver is used for aerodynamic analysis, the use of standard

finite difference techniques for calculation of the design sensitivities can be computationally

prohibitive. Therefore, a discrete semi-analytical sensitivity analysis procedure developed by

Chattopadhyay and Pagaldipti [9] will be used to calculate the aerodynamic design sensitivities

including the sonic boom sensitivities.

Approximate Analysis
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The optimization technique used in this research is gradient-based and requires the

evaluation of the objective functions and constraints during every iteration of optimization. For the

HSCT problem, it is computationally expensive to evaluate these functions through exact analysis

all the time. Here, an approximate analysis technique has been used within each iteration of the

optimization. The two-point exponential approximation technique developed by Fadel et al. [10],

has been found to be well suited for nonlinear optimization problems and has been used in the

present research for approximating the objective functions and the constraints within each

optimization cycle. The technique is formulated as follows.

where Fi(_ ) is the approximation to the objective function F i at a neighboring design point _,

based on its values and its gradients at the current design point _1 and the previous design point

q_O. The approximate values for the constraints, gj(_), are calculated in a similar fashion. This

technique takes its name from the fact that the exponent used in the expansion is based upon

gradient information from the previous and current design cycles. The exponent Pn, in Eq. 4 is

defined as:

po- lo ot 0nt_logof lnl
Pn can be considered as a "goodness of fit" parameter, which explicitly determines the trade-offs

between traditional and reciprocal Taylor series based expansions (also known as a hybrid

approximation technique). It can be seen from Eq. 4 that, in the limiting case of Pn = 1, the

expansion is identical to the first order Taylor series and when Pn = - 1, the two-point exponential

approximation reduces to the reciprocal expansion form. In the present work, the exponent is

defined to lie within this interval (-1 _< Pn < 1). Equations 4 and 5 indicate that singularity points

may exist in the use of this method and care must be taken to avoid such points. In the present

study, when singularity problems arise, the approximation technique is reduced to the linear Taylor

series expansion (Pn = 1).
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In multidisciplinary optimization, competing design attributes are almost always present.

The following problems all have the property of having objective functions that impose conflicting

design requirements. Three different problems have been chosen to demonstrate the enhanced K-S

formulation. The first is an algebraic example problem with two objective functions, two

constraints, and one design variable. The second is a classical three bar truss problem with two

objective functions, six structural constraints, and two design variables [3]. The last problem is

associated with HSCT that has three objective functions, three constraints, and six design

variables.

RESULTS & DISCUSSION

a) 3-Bar Truss Problem

The first application of the enhanced K-S function is a classical three bar truss problem [3].

The problem addressed here is a modified version of the one that the original K-S formulation was

demonstrated on in Ref. 3. A schematic of the problem is shown in Figure 3. The two outside

bars of the truss are made of steel, and the middle bar is made of titanium. Two loads are applied

as shown. The material properties and costs of the bars are also shown on the figure. The design

objectives are to minimize both the weight and cost of the truss. The formulation of the problem is

as follows.

Minimize

Weight of the 3-Bar truss, W

Cost of the 3-Bar truss, C

subject to

Set _ S i _ Sy t
i=1-3

The aim is to minimize the weight of the truss while minimizing its cost. There are two objective

functions, six constraints, and two design variables in the optimization problem. The design

variables are the cross sectional areas of the truss members, A 1 and A2, (Figure 3) which are

required to be greater than 0.001 square inches. There are three constraints on the tensile loads and

three on the compressive loads. Since titanium is lighter than steel the minimum weight design

would use a larger titanium center member and smaller steel outer members. Since steel is cheaper

than titanium, the minimum cost design would have a smaller titanium center member and larger
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steel outer members. These conflicting design criteria make this problem a good candidate for

demonstrating the enhanced K-S technique.

10 inches I0 inches

L ÷r

I I
o "%o

v

A1

(Steel)

V

20000 Pounds

(Titanium)

// 10 inches

A_I1 ) l(

20000 Pounds

Material Properties

Young's Modulus(psi)

Density (Ib/eu in)

Cost($/Ib)

Tensile Yield

Stress(psi)

Comp. Yield

Stress(psi)

Steel

30,000,000

0.282

0.41

36,000

27,000

Titanium

15,500,000

0. 160

25.00

110,000

82,500

Figure 3. Three Bar Truss Example Problem with Material Properties.

Preliminary optimization was carried out for the three reference cases (see Figs. 4-5):

(i) Single objective, weight minimization ("weight only")

(ii) Single objective, cost minimization ("cost only") and

(iii) Multiobjective, unweighted optimization C(1,1)").
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These are used as references for the enhanced optimization. The expected trends of weight and

cost variations are seen. Also, Figure 5 indicates that the minimum cost criteriais the critical one in

this optimization problem. The results obtained by using the enhanced multiobjective optimization

process on the 3-Bar Truss Problem are presented in Figures 6-9. In the figures, the weight factor

set (5,1) means that the first objective function (weight) has received a weight factor of 5 while the

second (cost) has a weight of 1. The unweighted K-S formulation is recovered when a

combination of (1,1) is applied.

I-4
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4.5

4"41
4.3

4.2
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4-

3.9-

3.8-
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D WeightOnly

CostOnly

(1,1)

Figure 4. 3-Bar Truss: Weight.

V

o

16-

14-
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8-
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4.

2-

O.

D WeightOnly

CostOnly

(1,1)

Figure 5. 3-Bar Truss • Cost.
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Figures 6-7 show the results of weighting the first objective function (weight) using Type

A weight factors. Weight factors of 2, 5, 10, and 100 relative to the cost have been chosen to

emphasize the minimum weight criterion here. The results show that the enhanced K-S approach

is effective in emphasizing a specific objective in the multiobjective optimization problem. For

example, when weight of the truss is emphasized (Fig. 6), the decrease in weight with increasing

emphasis (weight factor varies from 1 to 10) is seen.

4.5
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3.7-
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..¢ / f J

.,¢ / ,,e j

e¢f f/'

IffJ

.,¢ / J J

..¢ f f J

,,- f f _'

/ f f,_'

,I7.I-/

D 1,1)

_"_ (2,1)

(5,1)

_] (10,1)

D (100,1)

Figure 6. Weight for Type A Weight Factors.
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Figure 7. Cost for Type A Weight Factors.
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The effect of the weighting on the design variables is shown in Table 1, which also contains

the tensile force constraint for the steel bars that was violated consistently.

Table 1. Effect of Weight Factors on Design Variables and Violated Constraint.

Weight Factor Sets A 1 (in 2) A2 (in 2) I Violated Constraint

(1,1) 0.555 0.001 0.00085

(2,1) 0.505 0.001 0.09974

(5,1) 0.477 0.001 0.16423

(10,1) 0.455 0.001 0.22047

( 100,1) 0.442 0.318 0.00636

( 1,0.5) 0.555 0.001 0.00050

(1,0.2) 0.555 0.001 0.00022

(1,0.1) 0.555 0.001 0.00013

( 1,0.01) 0.453 0.347 0.00011

Figures 8-9 show the results of the Type B weight factors de-emphasizing the cost, thus

emphasizing the weight. From the table and the figures, it is apparent that the Type B weight

factors did have the expected effect, however it took a fairly small weight factor to eventually

achieve it. In the intermediate range, the de-emphasizing of the Cost objective function actually

allowed the constraint that was being violated to get smaller and smaller. Finally, at (1,0.01), the

objective function for weight was emphasized sufficiently to cause it to decrease significantly,

simultaneously causing the cost to increase substantially.
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Figure 9. Cost for Type B Weight Factors.

As mentioned above, the numerical values of the weight factor(s) depend on the application

at hand. User input and competence thus are important factors in the optimization process. The

change in the objective function with increasing weight factor is nonlinear. That is, a very large

value of the weight factor does not always lead to the lowest value of the objective function. The

reason for that is, the effect of weight factors on the K-S function envelope is nonlinear and hence

a particularly large weight factor may have the effect of forcing the design into the infeasible

domain leading to infeasible designs. It appears that the Type B weight factors are preferable
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because they can achieve the desired effect (with correct user input) while not violating the

constraints to the same extent as the original K-S formulation does.

b) HSCT Sonic Boom Problem

The second problem addressed in this work is that of a High Speed Civil Transport design

for minimum sonic boom and improved aerodynamic performance [5-7]. Figure 10 illustrates a

schematic of the sonic boom pressure signature produced by a supersonic wing-body configuration

at a given distance from the aircraft. The two positive pressure peaks are the sonic boom levels

f

t'5

0.06

0.05-

0._-

0._-

0.02 -

0.01 -

0-

-0.01 -

-0._-

-0._

15 20 25 30 35

J
I I I I ! I I I

45 50 55 60

x(m)

Figure 10. Sonic boom pressure signature of a supersonic aircraft configuration.

that must be minimized. The first peak is associated with the shock wave caused by the nose of

the aircraft. The second peak is caused by the wing. The negative pressure peak corresponds to

the expansion waves that occur in the flow field past the wing. From an aerodynamics

perspective, it is of interest to minimize the ratio of the coefficient of drag to the coefficient of lift

(CD/CL). Thus, the three objective functions to be minimized for this optimization problem are the

two pressure peaks and the CD/C L ratio. This must be accomplished while keeping the lift at a

desired level, which is done by imposing upper and lower limits on the CL (CL, = & CLu ). A

constraint has also bee placed on the wing trailing edge angle to ensure computational stability.

There are also upper and lower limits (constraints) imposed on the design variables. The

mathematical formulation of the problem is as follows.
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IVfinirnize

Drag to Lift Ratio, CD/CL(1)

Overpressure Peaks, Apm_x ' (2), Apm_2 (3)

subject to

Cl.mi n < C L _ CL_mx
Lift Constraint

_,t_ <-- rad
2

Wing Trailing Edge Constraint

<DE< _ _ _u Side Constraints on Design Variables

In the present work, since all the design variables that were chosen are associated with the

wing geometry, they only have significant effects on the second pressure peak and the CD/C L

ratios. So, these will be the objective functions that are addressed here. The nose length and the

maximum radius of the forebody are held constant at a level commensurate with (obtained

separately) minimum first pressure peak during the optimization of Apm_x 2 and CD/C L.

The design variables for this configuration are shown on Figure 11. The six design

variables are wing root chord (Co), the two leading edge sweeps (_,1 & )_2), tip chord (ct), break

length (Xb), and wing starting location (Xw). As mentioned previously, upper and lower bounds

are imposed on these variables during the optimization process. While the first pressure peak

remains an objective function, only the second pressure peak and the C_C L ratio will be weighted

since the variables that affect the first pressure peak are not included in the design variable set.
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Wing starting location (Xw)

Tip chord (ct)

Break length (Xb) [_S

Figure 11. HSCT configuration and design variables.

Aerodynamic Analysis

In this research, the flow field for the HSCT has been evaluated using a flow solver called

UPS3D [11] that utilizes the three dimensionalized Parabolized Navier Stokes (PNS) equations.

The assumptions made in deriving the PNS equations are outlined below [11-13]. The streamwise

derivatives of the viscous terms are neglected. The inviscid region of the flow field must be

supersonic and the streamwise velocity component must be positive everywhere. Thus streamwise

flow separation is not allowed but crossflow separation is allowed. Unlike the unsteady Navier-

Stokes equations which require time marching numerical schemes, the PNS equations are solved

using space marching schemes resulting in significant reductions in computational time and

memory requirements. The flow solver is the UPS3D code [11] developed at NASA Ames

Research Center. The computational procedure used in this code integrates the PNS equations

using an implicit, approximately factored, finite-volume algorithm where the crossflow inviscid

fluxes are evaluated by Roe's flux-difference splitting scheme [14]. The UPS3D code also has the

capability of calculating the inviscid flow field, by solving the PNS equations without the viscous

terms. In the present research, this inviscid option has been used while evaluating the flow field.

The upwind algorithm is used to improve the resolution of the shock waves over that obtained with

the conventional central differencing schemes. The post-processor in the UPS3D solver evaluates

the non-dimensional force coefficients, such as lift coefficient (C 0 and drag coefficient (Co), by

integrating the pressure distributions over the surface of the body. Non-dimensionalization of

these force coefficients is performed using a user-specified characteristic area of the aircraft



Interchange Part A - Page 20

Sonic Boom Analysis

Cheung et al. [15] have combined Whitham's quasilinear theory [16] with the three-

dimensional PNS code, UPS3D, to predict sonic boom. The flow field associated with wing-body

configurations is evaluated by UPS3D and the overpressure signal for the near field is evaluated.

The overpressure signals at specified far fields are then obtained using one of three different

approaches for various configurations such as a cone-cylinder, a low aspect-ratio rectangular wing

and a delta wing-body. In the first approach (for nonlifting cases), the UPS3D code is modified so

as to incorporate a sonic boom prediction capability including all nonlinear effects. The second

approach is applicable to both lifting and nonlifting cases. In this approach, an extrapolation

method [17] has been used for predicting sonic boom. In the third approach (for lifting cases), the

equivalent area distribution due to lift is generated by the surface pressure coefficients calculated by

the CFD solver. The equivalent area distribution due to volume is calculated from the geometry of

the aircraft. Summation of the two equivalent area distributions yields the total equivalent area

distribution that gives the F-function of the body. In the present research, the second approach,

based on the extrapolation technique of Ref. 17, has been used to obtain the sonic boom

signatures.

Sonic Boom Results

The enhanced K-S formulation has been applied to the High Speed Civil Transport

configuration described above. For the weighting factors, the order of the objective functions (Fi)

is, CD/C L (i = 1), then the first and second pressure peaks (i = 2, 3). Thus, a (5,1,1) weight factor

set indicates that CD/C L is weighted by a factor of 5 relative to (Ap,,_) 1 and (Ap,_) 2. The "ref"

indicates the configuration before the optimization process begins. As mentioned previously, for

the present work only the first and third objective functions will be assigned weighting factors. All

the results were for d I = 3.61 Ib and were based on 30 cycles of optimization.

One key element of the optimization problem is the evaluation of design sensitivities for the

HSCT application, these sensitivities were obtained using a finite difference approach where the

design variables are perturbed by a prescribed amount and the CFD solver is used on the

"perturbed" configurations. The results from the perturbed and unperturbed configurations are

used for calculating the sensitivities. This has its inherent accuracy problems in addition to the

large computational time involved. Also, the 2-point exponential approximation technique used to

advance from cycle to cycle may also give rise to deviations from a true design point. Such

deviations and errors may sometimes be magnified if the problem under consideration (e.g. HSCT)



Interchange Part A - Page 21

is complex involving large analysis tools. The results of the present section should be viewed with

these considerations as a backdrop.

3
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Figure 12. Theoretical Percent Reduction for CD/C L.

In Figures 12-13, the theoretical reductions per cycle for each objective function are illustrated

in a comparative fashion. The actual values of the reductions are contained in Table 2. An

examination of the figures and table show that the weight factors appear to be effective. It would

be expected that when one of the objective functions is emphasized either by being directly

weighted or by de-emphasizing the other functions, it's percent reduction will increase. As

apparent from the data, this does not always mean that the percent reduction for that function will

be greater than for the unweighted case, but that it will have increased in importance relative to the

other functions.
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Figure 13. Theoretical Percent Reduction for (Apex) 2.

Table 2. Theoretical percent reductions for objective functions.

Weight Factor Sets CJC L (Ap_)2

(1,1,1) 0.354 6.023

(10,1,1) 0.440 3.729

(1,0.1,0.1) 1.034 2.207

(1,1,10) -0.168 6.193

(0.1,0.1,1) 0.033 5.820

Looking first at the percent reductions when CD/C L is emphasized, both Type A and B weight

factors show an increase in the percent reduction of CD/C L and a decrease in the percent reduction

of (Apr__) z. For the case where (Ap,_x) _ is emphasized, the Type A weight factor set shows a

small increase in percent reduction for (Ap,_) 2 and a significant decrease in the percent reduction

of CD/C L. It fact, Co/C L actually experienced a theoretical percent gain instead of reduction in each

cycle on average. The Type B weight factor set does have a small decrease in the percent reduction

of the emphasized function, but it also has a very significant decrease in the percent reduction for

the de-emphasized function. This equates to the emphasized objective function being more

sensitive to design changes than in the unweighted case.
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Figure 14. Comparative results of minimum CD/C L for each weight factor set.

Figures 14-15 show the effect of the weight factors on the objective functions. The optimum

solutions (after 30 cycles) obtained for unweighted ((1,1,1)), CD/C L -emphasized ((10,1,1) and

(1,0.1,0.1)) and (Ap,,_)2-emphasized ((1,1,10) and (0.1,0.1,1)) are compared along with the

reference values of the objective functions of interest (CD/C L and (Ap,_x)2). Tables 5-6 also contain

the minimum values achieved for CD/C L and (Ap,mx)2 for each weight factor set. Also shown in the

tables are the corresponding design variables for these cases and at which iteration they occurred.
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Figure 15. Comparative results of minimum (Apm_x)z for each weight factor set.

It is apparent from Figure 14 and Table 3 that for the minimum Co/C L case, the results reflect

what was expected. The weight factor sets that emphasized CD/C L achieve a lower Co/C L than the

unweighted case, and the weight factor sets that emphasize (Ap,_x) 2 have a larger minimum CD/C L

than the unweighted case. For the minimum (Apm_) 2 cases, there is a little explanation required for

the results. Figure 15 and Table 4 show that all the weight factor sets achieved lower values for

(Ap,_x)z than the unweighted case. The lowest minimum was found with the Type A weight

factor set even though it is designed to emphasize CD/C L. It must be noted that this set did in fact

achieve the results desired for emphasizing CJC L. The main reason for the occurrence of the

lower value of (Apm_x)2 here could be that the optimization formulation tends to favor the objective

function with the lowest value ((Ap,_)z), as explained earlier. This can be seen from Tables 3-4,

where even though Co/C r definitely grows in importance when weighted for the cases chosen,

(Apm_x)2 still has a larger theoretical percent reduction. Also, the approximation procedure (two-

point exponential) used within each optimization cycle contributes to slight deviations in the

solutions, especially at intermediate cycles.
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Table 3. Minimum CD/C L for weight factor sets.

ref (1,1,1) (10,1,1) (1,0.1,0.1) (1,1,10) (0.1,0.1,1)

_(deg) 70.46 72.86 74.50 72.84 72.32 72.51

_. 2(deg) 52.42 51.43 52.87 50.50 50.81 50.58

co(m ) 7.81 8.29 8.67 8.30 7.96 7.86

ct(m ) 1.5776 1.3510 1.2666 1.2632 1.3165 1.2400

xb(m) 11.99 12.51 13.00 12.39 12.36 12.30

Xw(m) 7.80 7.56 7.71 7.27 7.62 7.66

CJC L 0.11196 0.11049 0.11028 0.11016 0.11075 0.11077

(Apm_)z
0.05206

(-1.3%) (-1.5%) (-1.6%) (-1.1%) (-1.1%)

0.04700 0.04336 0.04735 0.04680 0.04551

(-9.7%) (-17.2%) (-9.0%) (-10.1) (-12.6)

cycle 29 28 27 18 27
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Table 4. Minimum (Apex) 2 for weight factor sets.

ref (1,1,1) (10,1,1) (1,0.1,0.1) (1,1,10) (0.1,0. 1,1)

_-1 (deg) 70.46 73.59 74.50 73.76 73.01 73.23

_2(deg) 52.42 51.95 52.35 50.25 50.25 50.25

Co(m ) 7.81 8.21 8.59 8.22 7.80 7.94

ct(m ) 1.5776 1.3375 1.2794 1.2400 1.2400 1.2400

Xb(m ) 11.99 12.39 12.87 12.34 12.25 12.42

Xw(m) 7.80 7.64 7.63 7.31 7.69 7.74

CD/C L 0.11196 0.11086 0.11035 0.11032 0.11100 0.11092

(Apn_)2
0.0_06

(-1.0%) (-1.4%) (-1.5%) (-0.9%) (-0.9%)

0.04442 0.0_85 0.04428 0.0_28 0.0_91

(-14.7%) (-17.7%) (-14.9%) (-15.0) (-15.7)

cycle 30 27 30 29 30

The corresponding pressure signatures for the minimum (Apm_) 2 cases are shown in

Figures 16-17. As mentioned previously, all the weighted cases yielded a lower value of (Ap,_) 2

than the unweighted case, with (10,1,1) yielding the lowest.
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Figure 16. Pressure signatures for minimum (Ap._) z cases.
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Figure 17. The second pressure peak for minimum (Ap._) 2 cases.
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One of the key issues to be addressed in the enhanced K-S function procedure is the proper

choice of weight factors. In other words, the choice between Type A or Type B must be

examined. Based on the results obtained in this study, Type B weight factors are recommended to

be used with the developed procedure
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